
Elegant Technologies

Peter B. Reintjes

April 3, 1992

Abstract

Since being a circuit designer in the 1970’s, I have worked with three
technologies that I consider elegant. The first two, CMOS and UNIX, have
experienced phenomenal success after considerable initial resistance. The
last is Prolog. I would like to develop this notion of Elegant Technologies
in an effort to understand the broad range of current and future uses for
Prolog.

1 Introduction

There are many technologies for hardware and software development. They have
different strengths and weaknesses and we are frequently required to choose be-
tween them in order to accomplish a task. I have either been judicious or ex-
tremely lucky in the choices I have made. I began by using CMOS technology
when few people had heard of it. It was considered to be a specialized technology
which would not be widely used. With the phenomenal growth of CMOS IC
technology in the 1980’s I was in the position of having many years experience
with what many considered an “emerging” technology.

Similarly, I began using UNIX in the late seventies, and found such skills much
in demand a few years later. In each case, I chose to work with the technology
because it greatly simplified my work. While it was quickly accepted in academia,
UNIX met with considerable resistance in the computer industry. It ultimately
went on to dominate the scientific computing industry.

More recently I have been using Prolog to develop application programs, pri-
marily in the area of Electronic Computer Aided Design (ECAD). The feeling
of déjà vu is overwhelming. The power and sense of clarity I get from the tech-
nology is matched only by the resistance coming from the mainstream of the
programming culture.

1

I believe these three technologies share characteristics which many people do
not recognize as being important, but ultimately lead to success. These qualities
are not disjoint, but seem to come from a wellspring of simplicity and coherence.
I have chosen to refer to this as the elegance of a technology. My use of the word
is inspired by Richard O’Keefe’s dictum that “Elegance is not optional” when
writing programs [OKeefe].

2 CMOS

In the old days, circuit design required a wealth of detailed information to be
remembered and calculated. Each vacuum tube or transistor in an amplifier had
four to six auxiliary components (resistors, capacitors, and inductors) whose val-
ues had to be calculated. Furthermore, the relationships between the macroscopic
properties of the circuit (gain, frequency response) and the individual component
values is very complex.

Some digital technologies, such as TTL and nMOS, require close attention
the details of fanout and noise margins. CMOS is largely immune to noise, and
each gate output can drive more inputs than nMOS or TTL. Thus, CMOS design
can thus proceed with a fraction of the detail required of the other technologies.
Furthermore, it’s lower power requirement ultimately allowed us to put many
more transistors on each chip. The following examples of CMOS circuits can be
understood with only a few basic relations.

Figure 1. Electrical Relationships

V+

d
Vin Vouti

Inverters

Ip ∝ −Vin

In ∝ Vin

Vr = I ×R
Resistor

∆Vc

∆T × C = I
Capacitor

The rightmost diagram shows a CMOS inverter. When the input voltage is
high, current flows through the n-transistor to ground and no current is allowed
to flow through the p-transistor. Thus the output is low. When the input is
low, the p-transistor is on, connecting the output to V + while the n-transistor is
turned off. With high and low voltage levels corresponding to the logic levels 1

2

and 0, the circuit clearly functions as a binary inverter.
However, a digital inverter does more than simply invert a signal. For digital

systems to work, these gates must move large numbers of electrons in response
to relatively small numbers. That is, they must amplify the signal. A CMOS
inverter is a highly non-linear amplifier. If the input moves a little in one direction,
the output will quickly move all the way in the opposite direction. But despite
appearances, we are not restricted to working with binary levels.

2.1 Feedback

Unlike other digital technologies, CMOS can also be used for analog circuit design.
For example, if you feed the output of a CMOS inverter through a resistor to its
input, the inverter becomes a linear amplifier. This is the simplest imaginable
application of negative feedback stablization. As the output tries to go high, the
current through the resistor will begin to raise the input, which in turn tends to
lower the output. Such a circuit immediately reaches a stable equilibrium at the
precise bias point of a push-pull linear amplifier [RCA73]. In other words, the
circuit achieves its fixed-point. An oscillator is similar, in that it tries to seek the
equilibrium point, but repeatedly overshoots the mark.

Figure 2. Analog CMOS Circuits

i
Rg

Ri

i i
Rf

Cf

Amplifier Gain = Rg

Ri Oscillator f = 1
1.4Rf Cf

If elegant technologies are characterized by the wealth of function that comes
from a few simple structures, CMOS certainly qualifies. Instead of building a
linear amplifier by meticulous calculation and component selection, we let nega-
tive feedback do all the work. The amplifier is linear because it has to be. Any
negative current pulling the input low must be matched by a positive current
from the feedback loop. The voltage amplification factor is simply the ratio of
the feedback resistor divided by the input resistor.

3

In figure 2, the component values determine the amplifier gain and oscillator
frequency. With CMOS, it is quite easy to modify these circuits to have param-
eters which vary in response to a control-voltage. In figure 3, the circuits are
transformed by the addition of a single n-channel transistor.

Figure 3. Voltage-Controlled Circuits

i i
Rf

Cf

Vc

Voltage-Controlled Oscillator

i
Rg

Ri

V+

2
dVc

Voltage-Controlled Amplifier

Instead of the oscillator’s frequency, we can control the pulse-width by con-
necting the n-transistor to ground instead of the point between the two inverters.
For an oscillator that produces sine waves, the Wien-Bridge oscillator below takes
advantage of the exponential response of back-to-back diodes. The final shape of
the “sine wave” will be determined by the value of resistor Rshape.

Figure 4. Wien-Bridge Sine Wave Oscillator

i
Cf

Rf

Rshape

i
Rg

Ri

d

Cf Rf

f = 1
2πRfCf

As before, this design can evolve gracefully. Substituting different configura-
tions for the diode-pair above will produce other complex wave shapes. Similarly
simple circuits can be constructed for analog and switch-capacitor filters and

4

phase-locked loops such as those found in modern FM radios. The abilities to
evolve gracefully and to span a wide variety of applications are fundamental char-
acteristics of an elegant technology. The lack of extraneous components results
in circuits which are readable in a way that other technologies are not.

Generally, when two circuits such as an amplifier and a filter have been de-
signed separately, one cannot simply plug the output of one into the input of the
other. One must consider loading and impedance matching, possibly needing to
redesign one or both of the sub-circuits for them to work together. But these
CMOS circuits can be easily re-combined because of the high input impedance
of MOS transistors. This ability to combine designs in different ways is also an
indication of elegance.

In the early seventies, while working with CMOS IC’s, my associates were
about evenly divided between the “practical” ones who used TTL chips, and the
“forward thinking” ones who were working with nMOS technology. I was pretty
much alone in my enthusiasm for CMOS, I couldn’t find suppliers who would
stock the parts I needed, and was literally ridiculed for my fanaticism in favor of
CMOS. The primary objection to CMOS was that it was slower than the other
logic families.

CMOS ultimately became the dominant logic technology, and now accounts
for the vast majority of integrated circuits. The same symmetry that makes
CMOS easy to work with allowed the device scaling which improved its per-
formance. More important than speed was the fact that CMOS circuits used
significantly less power and could therefore be packed more tightly together.

3 UNIX

At the same time that I was designing CMOS circuits, I was exposed to computing
in the form of PL/1 programming under TSO. On the basis of that experience,
I avoided computer programming for the next few years, preferring instead to
work with a blackboard.

My impression of programming was that most of my time was taken sim-
ply managing the details of the underlying computer system. The simple act of
getting data from a file required knowing several levels of system naming con-
ventions. To make matters worse, these naming conventions seemed to depend
on meaningless sequences of numbers. A myriad of data formats meant than
using two pre-existing programs required the creation and maintenance of inter-
mediate files as well as additional programs for data conversion. Providing an
environment in which a single program could run required something like:

5

Figure 5. OS/360 Job Control Language

//HASPRJE3 JOB(PN80394),MSGCLASS=A,USER=PBJ043,

// PASSWORD=XYZZY,NOTIFY=PBJ043,MSGLEVEL=(1,1),TIME=33

//DD INPUT1 DSN=’XYM345.DEF.A’,VOL=833972,SER=034882,DISP=SHR

//DD OUTPUT1 DSN=’FU437.TMP1.M’,VOL=196644,SER=10247,DISP=NEW

After seeing 6th edition UNIX in 1978, I immediately began a career as a
programmer. UNIX was not simply an improvement in operating system tech-
nology – it completely reversed my earlier decision to avoid a career in computer
programming. With a few simple concepts, UNIX obviated many of the time
consuming activities of programming. Among these ideas were a uniform hierar-
chical file system in which I/O devices appeared as files, a convention of treating
these files as a simple linear array of bytes, and a standard way to pass data be-
tween running processes (pipes). UNIX was more than an operating system and
a collection of utility programs. It represented a style of software development
that became known as the “Software Tools” philosophy [Kernighan].

I found this working environment particularly well suited to graphics and
signal processing. When I had managed to get a digitized version of some songs
of the humpbacked whale, I tried analyzing this with an Fast Fourier Transform
(fft) program. However, due to high-frequency noise, I found it necessary to
write a low-pass filter in C.

Figure 6. lowpass.c

main()

{ float a[3];

int i = 0;

scanf("%f %f",&a[0],&a[1]); /* Read 2 numbers */

printf("%f\n",a[0]); /* Write the first */

while(scanf("%f",&a[(i+2)%3]) == 1) { /* Read a number */

printf("%f\n",(a[0]+a[1]+a[2])/3.0); /* Print the Average */

i = (i + 1) % 3; /* Increment index */

}

printf("%f\n", a[(i+1)%3]); /* Print last one */

}

Now I could send the filtered data to the FFT program with:

% cat whale | lowpass | fft

6

I had previously written a program (muse) that displayed musical notation
on a graphics terminal. It now occurred to me that with the addition of a simple
program to convert the strongest amplitude component of the FFT to the nearest
note in the equal-tempered scale (freq to note), I could display the whale’s song
in standard musical notation:

% cat whale | lowpass | fft | freq_to_note | muse

In contrast to the complex JCL to run a single program, this command ex-
ecutes and allows data to pass between five programs. But it was not only the
behavior of UNIX that was simple and elegant. I will never forget the experience
of reading the source code for the sixth edition of UNIX. With the aid of an
excellent commentary [Lyons], the ten thousand lines of code could be worked
through in detail in about three weeks. Once again, I was confronted by a system
which exhibited both remarkable flexibility and comprehensibility.

In 1980 I was working for Data General Corporation and well remember the
arguments against the use of C and UNIX. In particular, the primary objection
to UNIX was that it was too slow and wasteful of system resources. After all,
who had heard of writing an entire operating system in a high-level language.
Today, such objections are comical.

What the early critics of UNIX missed was the significance of easing the
programmer’s task, particularly in regard to portability across systems. They
considered only the efficiency of the operating system to the exclusion of pro-
gramming effort. In UNIX, as in CMOS, we notice the combination of simplicity
and power that comes from a few simple ideas, and the resulting benefits of
modularity and readability for managing complex systems.

4 Prolog

In the more recent past, a programmer was concerned with memory allocation
and deallocation, careful updating of pointers and (if you were really good) the
passing and testing of status values to indicate the successful operation of each
subroutine. The first thing I noticed about Prolog was that it essentially elim-
inated these three programming activities, allowing me to concentrate on the
problem at hand. I began using Prolog to build tools for parsing, translation,
circuit extraction, timing analysis, fault analysis, and interactive editing. The
conciseness and clarity that was possible in all of these different areas astounds
me to this day.

The ability to define a complete interactive graphical editor in a few thousand
lines of Prolog convinced me that a complete VLSI CAD system could be defined

7

in about 50,000 lines, as opposed to a million lines of C code. Since the sheer
bulk and consequent unreadability of traditional software is, or will soon become a
primary impediment to technological progress, this compactness is of considerable
importance.

Conciseness alone is not a virtue, as anyone who has produced write-only code
in languages like APL should know. But well-written Prolog is also remarkably
close to natural language, a characteristic which must be considered essential for
improved software engineering.

One of the most extraordinary things about Prolog is the wealth of tech-
niques and mechanisms which come out of a few central ideas. In this respect
it seems quite different from other high-level paradigms where increased power
is accompanied by a profusion of new terminology and support functions. Logic
Programming covers an incredible amount of terrain with only a few ideas like
unification, resolution, and a simple-minded search procedure. As in CMOS and
UNIX, the fundamental units of Prolog programs are small and easy to under-
stand. Also, one finds that larger functional units can be used in a myriad of
surprising ways. Prolog is clearly an elegant technology and provides opportu-
nities to make major contributions in Software Engineering, Rapid Prototyping,
Formal Language Processing, Simulation, and Formal Verification.

4.1 Software Engineering

The declarative and procedural readings of a well-constructed Prolog program
can be very close to a natural language specification. When this combines with
the great reduction in Prolog source code size as compared to C, we have an
opportunity to radically change the presentation of programs.

All programming languages have an interpretation in natural language, and
the naturalness of this translation can be debated. However, if we examine the
rules for good prose style, they can be seen as rules for good Prolog programming
style. This is true to an extent that is not true in other languages. These rules
are taken from The Elements of Style with “code”, “clause” and “predicate”
substituted for “words”, “sentence” and “paragraph”.

Figure 7. Elements of Prolog Style

1. Revise and Rewrite
2. Omit needless code
3. Keep related code together
4. Put statements in positive form
5. Choose a suitable design and hold to it

8

6. Make a predicate the unit of composition
7. Express co-ordinate ideas in similar form
8. Work with nouns and verbs
9. Use orthodox spelling

10. Be clear
11. Prefer the standard to the offbeat
12. Do not take shortcuts at the cost of clarity

One reason for this closeness between the values of good writing and good
Prolog programming is the correspondence between clarity and efficiency that
Prolog exhibits. It is more difficult to forsee improved software engineering in
other languages where clarity and efficiency are often at odds.

Traditional program documentation hides or ignores the volume of detailed
code in an effort to communicate the main ideas. Programs with such super-
ficial documentation are not maintainable. The much smaller Prolog program
can serve as the backbone of a document which describe the issues and complete
implementation details of a software product. Every line of code should appear
in this document. I disagree slightly with Knuth’s technique of “transforming”
a document into program source (with possible reordering) and suggest instead
that the organization of the document should be identical to the organization
of the program. This presents a challenge which should be met rather than
avoided. The purpose of documentation is to understand a program. While the
final organization might be motivated by either programmatic or documentation
considerations, it is important that the result is a single entity for which com-
pilation and typesetting are two simple transformations. Moving between the
documentation and the program should require as little effort as possible.

But what of other languages which allow for the elegant expression of algo-
rithms? For example, APL clearly has algebraic elegance. The difference is that
the typical program a few decades ago was 80% algorithm and 20% user interface,
whereas today these percentages are reversed. Prolog exhibits elegance in parsing
and database access, and these aspects of programming, and not numerical algo-
rithms, related to the user interface. Prolog goes beyond algorithmic elegance by
giving us a tool to handle even command-line arguments elegantly and to allow
elegant documentation.

The compactness of Prolog makes possible a style of total documentation,
where every line of code in a program appears in the documentation. As in good
writing, where every word is important, every goal in a good Prolog program has
an essential purpose that is vital to the program. A document which hides or
glosses over details is not useful for maintenance, which is the dominant cost of
software development.

9

If the discussion of a particular predicate really intrudes in the discussion of a
program, then it isn’t a fundamental part of the program. Perhaps it belongs in a
library (where it will be documented) or, better yet, turn out to be unnecessary.
One frequently learns something profound when failing to fit an awkward fact
into an otherwise coherent theory. Writing and re-writing programs will become
the norm rather than the exception.

4.2 Rapid Prototyping

If, because of the subtlety of Prolog, it takes longer to write an efficient program
than in C – how can Prolog be good for rapid prototyping?

Rapid prototyping is concerned with producing an executable specification,
a process which is less concerned with efficiency and robustness than production
program development. However inefficient or poorly constructed, an executable
specification of a software product is qualitatively different from a paper specifi-
cation. The task of turning a working program into a good one is considerably
easier in Prolog than in C. This ease is a natural consequence of the ten-fold
reduction in source code size and declarative semantics of Prolog. In contrast,
think how infrequently anyone bothers to turn a working program into a good
program.

Once an algorithm and data structures have been selected, the process of
producing a good Prolog program from a poor one is almost formulaic [OKeefe].
One makes the program as deterministic as possible while simultaneously elimi-
nating cuts and removing uses of assert, retract and append by adding state
and accumulator arguments.

Constraint Logic Programming (CLP) languages represent an even greater
improvement to rapid program development. With CLP, programmers can use
the abstraction of constraints to take advantage of linear programming [Lassez]
or graph-theoretic algorithms [Carlsson]. Not only is it unnecessary for the pro-
grammers to understand these algorithms, they might be completely unaware
that the constraint system is using them.

4.3 Formal Language Translation

Natural Language translation is hard. This is primarily because of problems with
ambiguity and the requirement for a large amount of world knowledge. While
formal language translation is far from trivial, it does not share these fundamen-
tal difficulties. The primary functions of a translation system are parsing and
database access, two technologies which are a fundamental part of Logic Pro-
gramming systems. Not inconsequentially, this kind of translation is a major

10

problem at many levels of the multi-billion dollar ECAD industry.
The first Prolog-based tool to directly address multiple-language translation

was AUNT (A Universal Netlist Translator)[Reintjes]. This program contains
five parsers and generators for hardware description languages and an internal
logical form common to all of these languages. Thus, the system implements 20
virtual translators. This work has been extended in MULTI/PLEX, a program
which automates the creation of complimentary parsers and generators from a
single grammar specification.

4.4 Simulation

In this section, I examine several ways in which Prolog can be exploited to im-
prove Circuit Simulation and Formal Verification. In particular, the conclusion
that Prolog is unsuitable for numerical processing is challenged by pointing out
how Prolog can be viewed as a compiler technology for numerical processing
[Clocksin88].

Today’s fastest electronic circuit simulation programs are primarily compilers
which produce executable code corresponding to the elements of a circuit. The
resulting program is a software version of the design where procedure arguments
correspond to electrical connections. A simulation consists of executing this pro-
gram with input and output data representing the time sequence of data values
for the “wires” connecting the circuit to the outside world. A simulation engine
is a set of skeletal subroutines which are called by these code fragments as they
execute. Subroutine preambles and postambles manipulate data stacks similar
to the activation records of computer programming languages.

Given that modern simulation is primarily the execution of compiled logic
circuitry, more efficient simulation will depend upon increasingly sophisticated
compilation. An effective simulation environment must support incremental dy-
namic loading of this code and complex bookkeeping to incorporate and resolve
links to modified sub-circuits.

These and many other features of modern simulators already exist as funda-
mental features of Prolog systems. At a more basic level, the similarity between
compiled logic circuitry and compiled logic programs has not gone unnoticed
[Clocksin87]. The ability of Prolog to backtrack adds even more power to ex-
amine and re-execute simulation steps. In recent years, there has been interest
in non-deterministic hardware models, for which Prolog is a natural medium of
expression and simulation.

Therefore we see Prolog technology as being an appropriate tool for building
more efficient and more flexible simulators. Not necessarily by writing simulation
algorithms directly in Prolog, but as a tool for more efficient compilation of circuit

11

descriptions into machine language.

4.5 Verification

As system complexity has increased, we have passed the point where entire sys-
tems can be verified by exhaustive simulation. The most promising alternative is
formal verification, which consists primarily of proving that an implementation
is functionally equivalent to a specification. Without formal verification, the sit-
uation is analogous to a mathematics without proofs, where all variables must be
reduced to arithmetical quantities and the arithmetic carried out. Several hard-
ware proving systems exist but can only be used by people skilled in theorem
proving.

Computer-aided design provides an interesting opportunity in formal verifi-
cation. Unlike theorem proving or post-hoc software verification, we can create
design languages and design processes oriented toward formal verification. Incre-
mental verification, dovetailed with design steps, can eliminate the combinatorial
explosion associated with most forms of verification. The challenge is to provide
tools for incremental verification that do not require designers to have a ground-
ing in proof theory. Failing that, we might attempt the creation of a framework
in which designers can more easily learn the techniques of formal verification.

While Higher Order Logics (HOL) [Gordon], are currently the most promising
approach to post-hoc formal verification, the “correct construction” approach can
probably be implemented in less powerful proof systems.

4.6 Summary

Software Engineering – Prolog implementations of programs yield an order-
of-magnitude less source code and a qualitative difference in readability,
and hence software maintainability.

Rapid Prototyping – Prolog offers a framework for creating executable specifi-
cations of programs. Constraint logic programming extends this by provid-
ing numerical and graph-theoretic algorithms under the simple abstraction
of constraints.

Language Processing – Prolog is well-suited to formal language translations
for the same reasons it is used in the considerably more ambitious task of
natural language processing.

Simulation – Prolog’s suitability for compilation [Warren] and optimization

12

[Clocksin88] make it a good framework for building native code compil-
ers for simulation languages.

Verification – Prolog’s weak form of theorem proving should prove sufficient for
incremental verification of systems which are constructed with provability
in mind.

5 Obstacles

Balancing this optimism are several obstacles to the exploitation of Prolog tech-
nology. Most notably, these are the lack of software maintenance metrics, various
performance issues, cost, and academic as well as industrial education.

5.1 Lack of Software Metrics

The development of a software product can often be measured in the sense that
a manager knows how many people were working for how long between the con-
ception of a product and its first release. At this point accountability becomes
difficult. Software maintenance of a released product often requires cycle-stealing
from developers working on the next product, and bug fixes are interleaved (or
confused) with feature enhancement. Subsequent releases can involve large num-
bers of employees who are not acknowledged as being directly responsible for a
software product.

Maintenance is estimated to be well over half of the total cost of software. In
advocating the use of elegant and powerful tools such as Prolog, we may initially
increase the more easily measurable costs (tools, training, delay in development)
in an effort to decrease a larger, but less well monitored maintenance cost. Unfor-
tunately, short-sighted managers will prefer to reduce the measurable expenses for
which they can be held directly accountable. Thus, the absence of maintenance
cost measurement is a major impediment to improved software engineering.

5.2 Performance

People frequently make the comment that Prolog is slow. There are many ways
to address this criticism, but first, one must determine whether the performance
problems are the result of inefficient programs written by novices. In most lan-
guages, poor programming style may reduce program efficiency by a factor of
two. In Prolog, which allows abdication of control (but doesn’t require it!), naive
programs can be orders-of-magnitude slower. Thus, the extra power of Prolog,
in the hands of a novice, has an extra cost.

13

While performance is often given as the primary objection to Prolog, there
are many reasons to be optimistic.

• Many performance problems are the result of poor programming.

• Nothing is cheaper than computation. Price/performance has improved a
billion-fold in the last forty years.

• Prolog compilers continue to improve. Recent work with abstract interpre-
tation/global analysis indicates a minimal twofold performance improve-
ment [VanRoy].

• Much numerical computing can be subsumed by constraints, allowing Pro-
log programmers to transparently employ numerical algorithms implemented
in low-level languages.

• Prolog is a powerful technology in which to construct specialized compilers
to generate imperative code from high-level specifications.

5.3 Cost

Prolog has an image problem associated with the cost of industrial implementa-
tions. By describing Prolog development systems as “compilers”, vendors encour-
age customers to compare these systems with C or C++ compilers. Managers
who have no idea what Prolog is, would have to conclude that it is too expensive.

Vendors need to emphasize that Prolog systems contain a relational and de-
ductive database system, a memory management system, an inference engine, a
backward chaining expert system shell, a parser generator and a theorem prov-
ing, rapid-prototyping, interactive development system with incremental loading.
Perhaps they should also mention that a compiler is included, at no extra cost.

5.4 Education

Academic

In some quarters, academia seems to be retreating from the cutting edge of pro-
gramming language awareness. While excellent work continues at the graduate-
level, very few undergraduates are being exposed to Prolog or LISP. The current
trends in programming have convinced academics that C must be taught, to the
exclusion of other languages.

14

Such people seem to have no comprehension of how easy it is to learn a lan-
guage like C or how detrimental it may be to programming style. They under-
estimate the value of exposure to radically different languages, perhaps thinking
that in teaching Pascal, Fortran, and C, they are exposing their students to three
important languages, rather than a single language model.

Industrial

Industrial education usually meets with limited success for a number of reasons.
Once out of school, people have less interest and energy to devote to new ideas and
companies fail to provide motivation comparable to grades in academia. Perhaps
more importantly, managers are often unable to give employees the necessary time
and resources to develop new skills. This is particularly true with the current
trends to reduce work forces.

Luckily, elegant technologies attract intelligent people. Such people will al-
ways manage to find the time to develop the necessary skills. But there will
always be too few of them.

6 Why do Elegant Technologies Succeed?

One may not immediately associate elegance with usefulness. But for a technology
to be elegant, it seems reasonable that we require it to have significant practical
value. Unless a technology fills a need, all of its elegance is academic. The earlier
needs for levels of abstraction in hardware design and systems programming (met
by CMOS and UNIX), were similar to the current need for a unifying technology
for applications programming. In all three cases, the technology provides a way
of dealing with the difficulties associated with size and complexity. In the case
of CMOS, it was the ability to design and then fabricate monolithic systems
of over one million transistors. For UNIX, it was the ability to transport an
operating system and a large body of software, not merely to a number of different
machines, but to virtually all machines. Logic Programming languages provide a
level of abstraction which greatly reduces the source-code size of programs, thus
improving our ability to read, maintain, reuse, and verify them.

Proper etiquette usually requires us to make comments about the complemen-
tary nature of different paradigms and to acknowledge that different paradigms
provide “the right tool for the job” in different instances. However, there are
indications that Logic Programming is superior for symbolic applications, simu-
lation, database technology, translation, financial modeling, knowledge engineer-
ing, CAD, theorem proving, and even as a framework for numerical processing.

15

Have I left anything out?
We are selling Logic Programming short if we only think of it as being appro-

priate for Expert Systems or other AI domains. My experiences, and the rarity
of truly elegant technologies, tell me that Logic Programming could easily be
the dominant programming paradigm in scientific and industrial applications by
the end of the present decade. There are many reasons to be optimistic about
achieving the opportunities I have mentioned. In view of the history of CMOS
and UNIX, I even take some comfort from the fact that Prolog is considered to
be too slow.

7 Conclusions

• An Elegant Technology is one which introduces a significant level of ab-
straction with a few concepts.

• Elegant Technologies transcend specialization and exhibit a tendency to do
everything well.

• Designs in Elegant Technologies can evolve gracefully.

• Designs in Elegant Technologies are readable, facilitating education and
maintenance.

• Early recognition and appreciation of Elegant Technologies requires a value
system that places a premium on simplicity, elegance, and comprehensibil-
ity.

• CMOS, UNIX, and Prolog are Elegant Technologies.

• Elegant Technologies are ultimately successful because they improve our
ability to manage complexity.

Bibliography

[Clocksin87], W.F. Clocksin, “Logic Programming and Digital Circuit Analy-
sis”, The Journal of Logic Programming, North Holland March 1987

[Clocksin88], W.F. Clocksin, “A Technique for Translating Clausal Specifi-
cations of Numerical Methods into Efficient Programs”, The Journal of Logic
Programming, pp 231. North Holland September 1988

16

[Carlsson], Mats Carlsson, “Boolean Constraints in SICStus Prolog”, SICS
Technical Report, T91-09, September 1991

[Gordon], Michael Gordon, “Why Higher Order Logic is a Good Formalism
for Specifying and Verifying Hardware”, Formal Aspects of VLSI Design, edited
by G. Milne and P.A. Subrahmanyam, North Holland, 1986

[Jaffar], J. Jaffar and J-L. Lassez, “Constraint Logic Programming”, Proceed-
ings 14th POPL pp, 111-119, ACM, January 1987

[Kernighan], B. Kernighan and P.J. Plauger, Software Tools, Addison Wesley,
1978

[Lyons], John Lyons, A Commentary on the UNIX Timesharing System, Uni-
versity of New South Wales, suppressed document

[OKeefe] The Craft of Prolog MIT Press 1990

[RCA73], COS/MOS Digital Integrated Circuits RCA Solid State Databook
Series, SSD-203A RCA Corporation, 1973

[Reintjes], “AUNT: A Universal Netlist Translator”, Journal of Logic Pro-
gramming,8 pp5-19, North Holland 1990

[VanRoy], Peter Van Roy, “High Performance Logic Programming with the
Aquarius Prolog Compiler”, IEEE Computer, pp 54-67, IEEE January 1992

17

